Bootstrapped Multi-Model Neural-Network Super-Ensembles for Wind Speed and Power Forecasting
نویسندگان
چکیده
The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a multi-ANN model super-ensemble for application to multi-stepahead forecasting of wind speed and of the associated power generated from a wind turbine. A statistical combination of the individual forecasts from the various ANNs of the super-ensemble is used to construct the best deterministic forecast, as well as the prediction uncertainty interval associated with this forecast. The bootstrapped neural-network methodology is validated using measured wind speed and power data acquired from a wind turbine in an operational wind farm located in northern China.
منابع مشابه
Short and Mid-Term Wind Power Plants Forecasting With ANN
In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...
متن کاملShort and Mid-Term Wind Power Plants Forecasting With ANN
In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملپیشگویی گامـ بلند سرعت باد مبتنی بر مدل ترکیبی RNNGA
For proper and efficient utilization of wind power, the prediction of wind speed is very important. Wind is one of the main sources of energy in the world, but the wind turbines have a lack of reliability, continuity and homogeneity in power production. On the other hand, sudden changes of wind speed, lead to risk for wind turbine units health. Therefore, the prediction of wind speed for turbin...
متن کاملMulti-Step-Ahead Combination Forecasting of Wind Speed Using Artificial Neural Networks
Wind speed plays a very important role in the scheduling of power systems and dynamic control of wind turbine. Wind speed forecasting has become one of the most important issue for wind energy conversion recently. Adaptive and reliable methods and techniques for wind speed forecasting are urgently needed in view of its stochastic nature that varies from time to time and from site to site. Back ...
متن کامل